Home
Class 12
MATHS
If tan^(-1) y = tan^(-1) x + tan^(-1)((2...

If `tan^(-1) y = tan^(-1) x + tan^(-1)((2x)/(1 -x^(2)))", where" |x| lt 1/sqrt3`.
Then, the value of y is

A

`(3x-x^(3))/(1-3x^(2))`

B

`(3x+x^(3))/(1-3x^(2))`

C

`(3x-x^(3))/(1+3x^(2))`

D

`(3x+x^(3))/(1+3x^(2))`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Let tan^(-1)y=tan^(-1)x+tan^(-1)((2x)/(1-x^(2))) where |x|<(1)/(sqrt(3))* Then a value of y is : (1)(3x-x^(3))/(1-3x^(2))(2)(3x+x^(3))/(1-3x^(2))(3)(3x-x^(3))/(1+3x^(2))(4)(3x+x^(3))/(1+3x^(2))

y=tan^(-1)((x)/(1+sqrt(1-x^(2))))

If y = 2tan^(-1)x+sin^(-1)((2x)/(1+x^(2))) , then "………"lt y lt "………" .

If x=2. y=3 , then tan^(-1)x+tan^(-1)y=

If tan^(-1)x,tan^(-1)y,tan^(-1)z are in A.P the (2y)/(1-y^(2))=

If 3tan^(-1)(2-sqrt(3))-tan^(-1)(x)=tan^(-1)((1)/(3)) then x=

2 tan ( tan^(-1)(x)+ tan^(-1)(x^(3))) " where " x in R - {-1,1} is equal to

tan^(-1)x+(tan^(-1)(2x))/(1-x^(2))=tan^(-1)((3x-x^(3))/(1-3x^(2))),|x|<(1)/(sqrt(3))