Home
Class 12
MATHS
If y=(tan^- 1)(sqrt(1+x^2)-1)/x, then y'...

If `y=(tan^- 1)(sqrt(1+x^2)-1)/x,` then `y'(1)` is equal to

A

`1//4`

B

`1//2`

C

`-1//4`

D

`-1//2`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If y = tan^(-1)((x)/(sqrt(1 -x^2))) , then (dy)/(dx) is equal to

If y=tan ^(-1) (sqrt( 1+x^(2))-x),then ( dy)/(dx)=

Solve y=tan^(-1)((sqrt(1+x^(2))-1)/(x))

If y=tan^(-1)((sqrt(x)-x)/(1+x^((3)/(2)))), then y'(1) is:

If y=tan ^(-1) (sqrt( 1+x^(2)) +x ),then (dy)/(dx) =

tan^(-1)x+tan^(-1)y is equal to

If y=tan^(-1)((sqrt(1+x^(2))-1)/(x)) , then find (dy)/(dx) when -1lexle1.

y=tan^(-1)((x)/(1+sqrt(1-x^(2))))