Home
Class 12
MATHS
(d)/(dx)[cos^(-1)sqrt((1+x^(2))/(2))=...

`(d)/(dx)[cos^(-1)sqrt((1+x^(2))/(2))=`

A

`(-1)/(2sqrt(1-x^4))`

B

`(1)/(2sqrt(1-x^4))`

C

`(-x)/(sqrt(1-x^4))`

D

`(x)/(sqrt(1-x^4))`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

(d)/(dx)[tan^(-1)sqrt((1+(cos x)/(2))/(1-(cos x)/(2))))

Prove that (d)/(dx)(cos^(-1)x)=(1)/(sqrt(1-x^(2)) , where x in [-1,1].

d/(dx)(cos^(-1)((1 - x^2)/(1 + x^2))) =.............. If x is positive

(d)/(dx)cos^(-1)(sin x)=

(d)/(dx)[sin^(-1){cos(x^(2)-2)}]=

(d)/(dx)[cos^(-1)(xsqrtx-sqrt((1-x)(1-x^(2))))]=

(d)/(dx) (cos (sec^(-1) ((x)/(8)))=

Differentiate the following function with respect to x:cos^(-1){(x+sqrt(1-x^(2)))/(sqrt(2))};-1

Find (d)/(dx) tan^(-1)(sqrt((1-cos x)/(1+cos x))) .

Differentiate tan^(-1)((sqrt(1-x^(2)))/(x)) wrt cos^(-1)(2x sqrt(1-x^(2))) if x varepsilon((1)/(sqrt(2)),1)