Home
Class 12
MATHS
If y= (sin x)^((sin x)^(sinx)..oo), then...

If `y= (sin x)^((sin x)^(sinx)..oo)`, then `(dy)/(dx)=`

A

`(y^2 cot x)/(1-y log sinx )`

B

`(y^2 cot x)/(1+y log sinx )`

C

`(y cot x)/(1-y log sinx )`

D

`(y cot x)/(1+y log sinx )`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If y= (sinx -cos x )^((sin x +cos x ) ),then (dy)/(dx)=

if y=(sin x)^(cos x). Then (dy)/(dx)=

y=x^(sinx)+(sin x)^(cos x), then find (dy)/(dx)

If y= x^(sin x) +(sin x)^(x) ,then (dy)/(dx) =

y=x^(x sin x) then (dy)/(dx)

If y=x^(sin x), then find (dy)/(dx)

If y=(sin x) ^(sin x ^sin x ....oo) then prove that dy/dx=(y^2 cot x)/(1-y log (sin x))

If (x+y)=sin(x+y) then (dy)/(dx)=

y=log ((1-sin x )/(1+sin x )),then (dy)/(dx) =

If y= (tan x )^(sin x ) ,then (dy)/(dx)=