Home
Class 12
MATHS
(d^n)/(dx^n)(logx)= ((n-1)!)/(x^n) (b) ...

`(d^n)/(dx^n)(logx)=` `((n-1)!)/(x^n)` (b) `(n !)/(x^n)` `((n-2)!)/(x^n)` (d) `(-1)^(n-1)((n-1)!)/(x^n)`

A

`((n-1)!)/(x^n)`

B

`(n !)/(x^n)`

C

`((n-2)!)/(x^n)`

D

`(-1)^(n-1) ((n-1) !)/(x^n)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

(d^(n))/(dx^(n))(log x)=(a)((n-1)!)/(x^(n))(b)(n!)/(x^(n))(c)((n-2)!)/(x^(n))(d)(-1)^(n-1)((n-1)!)/(x^(n))

(b) int(x^(n-1)dx)/(sqrt(a^n+x^n))

int(dx)/(x^(n)(1+x^(n))^((1)/(n)))

The coefficient of 1/x in the expansion of (1+x)^(n)(1+1/x)^(n) is (n!)/((n-1)!(n+1)!) b.((2n)!)/((n-1)!(n+1)!) c.((2n-1)!(2n+1)!)/((2n-1)!(2n+1)!) d.none of these

Let S_(n)(x)=(x^(n-1)+(1)/(x^(n-1)))+2(x^(n-2)+(1)/(x^(n-2)))+"....."+(n-1)(x+(1)/(x))+n , then

Find the sum (x+2)^(n-1)+(x+2)^(n-2)(x+1)^(+)(x+2)^(n-3)(x+1)^(2)++(x+1)^(n)(x+2)^(n-2)-(x+1)^(n) b.(x+2)^(n-2)-(x+1)^(n-1) c.(x+2)^(n)-(x+1)^(n) d.none of these

16.Prove that (x^(n))/(n)!+(x^(n-1)*a)/((n-1)!1!)+(x^(n-2)*a^(2))/((n-2)!2!)......+(a^(n))/(n!)=((x+a)^(n))/(n!)

If tan x=n tan y,n in R^(+), then the maximum value of sec^(2)(x-y) is equal to (a) ((n+1)^(2))/(2n) (b) ((n+1)^(2))/(n)( c) ((n+1)^(2))/(2) (d) ((n+1)^(2))/(4n)

if int(dx)/(x^(2)(x^(n)+1)^(((n-1)/(n))))=-[f(x)]^((1)/(n))+c,thenf(x)is(a)(1+x^(n))(b)1+x^(-1)(c)x^(n)+x^(-n)(d) none of these

If int(dx)/(x^(2)(x^(n)+1)^((n-1)/(n)))=-(f(x))^((1)/(n))+C then f(x) is (A)1+x^(n)(B)1+x^(-n)(C)x^(n)+x^(-n)(D)x^(n)-x^(-n)