Home
Class 12
MATHS
The maximum and minimum values of x^3-18...

The maximum and minimum values of `x^3-18x^2+96x` in interval `(0,9)` are

A

160, 0

B

60, 0

C

160, 128

D

120, 28

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the maximum and minimum values of f(x)=x+sin2x in the interval [0,2 pi]

Find the maximum and minimum values of f(x)=x^(50)-x^(20) in the interval [0,1] .

Find the maximum and minimum values of f(x)=x^(50)-x^(20) in the interval [0,1] .

Find the maximum and minimum values of f(x)=2x^(3)-24x+107 in the interval [1,3]

Find the maximum and minimum values of 2x^(3)-24x+107 on the interval [-3,3]

Find the maximum and minimum values of f(x)=sin x in the interval [pi,2 pi].

Prove that maximum and minimum values of the function x^(3)-18x^(2)+96x in the interval (0,9) are given by 160 and 128 respectively.

Prove that,maximum and minimum values of the function x^(3)-18x^(2)+96x in the interval (0,9) are given by 160 and 128 respectively.

The maximum & minimum value of y=x+(1)/(x) in interval [(1)/(3),(4)/(3)]

The maximum value of x^(3)-3x in the interval [0,2] is