Home
Class 12
MATHS
If (d)/(dx)[f(x)]=(1)/(1+x^(2))," then: ...

If `(d)/(dx)[f(x)]=(1)/(1+x^(2))," then: "(d)/(dx)[f(x^(3))]=`

A

`(3x)/(1+x^3)`

B

`(3x^2)/(1+x^6)`

C

`(-6x^5)/((1+x^6)^2)`

D

`(-6x^5)/(1+x^6)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If (d(f(x))/(dx)=(1)/(1+x^(2)) then (d)/(dx){f(x^(3))} is

int[(d)/(dx)f(x)]dx=

If (d)/(dx)[g(x)]=f(x) , then : int_(a)^(b)f(x)g(x)dx=

If (d)/(dx)[f(x)]=f(x), then intf(x)[g'(x)+g''(x)]dx=

If f(x)=tan^(-1)((3x-x^(3))/(1-3x^(2))) then (d)/(dx)(f(x)) is equal to

Statement 1: If differentiable function f(x) satisfies the relation 0AA x in R, and if f(x)+f(x-2)=0AA x in R, and if ((d)/(dx)f(x))_(x=a)=b, then ((d)/(dx)f(x))_(a+4000)=b Statement 2:f(x) is a periodic function with period 4.

Let phi(x) be the inverse of the function f(x) and f'=(1)/(1+x^(5)), then (d)/(dx)phi(x) is

"If " (d)/(dx)f(x)=f'(x), " then " int(xf'(x)-2f(x))/(sqrt(x^(4)f(x)))dx is equal to

Using the first principle,prove that: (d)/(dx)(f(x)g(x))=f(x)(d)/(dx)(g(x))+g(x)(d)/(dx)(f(x))

f(x) = sin^(-1)(sin x) then (d)/(dx)f(x) at x = (7pi)/(2) is