Home
Class 12
MATHS
If y=log(10)x+log(x)10+log(x)x+log(10)10...

If `y=log_(10)x+log_(x)10+log_(x)x+log_(10)10,"find "(dy)/(dx)`.

A

`(1)/(x log_e 10)-(log_e 10)/(x(log_e x)^2)`

B

`(1)/(x log_e 10)-1/(xlog_(10)e)`

C

`(1)/(x log_e 10)-(log_e 10)/(x(log_e x)^2)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=log_(10)x+log_(x)10+log_(x)x+log_(10)10 then what is ((dy)/(dx))_(x=10) equal to?

If y=log_(10)x+log_(x)10+log_(x)x+log_(10) 10 then what is ((dy)/(dx))_(x=10) equal to ?

If y=log_(10)x+log_(e)x+log_(10)10 , then find (dy)/(dx)

log_(10)^(x)-log_(10)sqrt(x)=2log_(x)10. Find x

If the positive numbers x,y&z satisfy xyz=1000,log_(10)x log_(10)y+log_(10)xy log_(10)z=1 and log_(x)10+log_(y)10+log_(z)10=(1)/(3) then the value of root(3)((log_(10)x)^(3)+(log_(10)y)^(3)+(log_(10)z)^(3)) is

If y=log_10 x then find (dy)/(dx)

If y=log_(5)(log_(5)x)+10^(3log_(10)x), show that (dy)/(dx)=(1)/(x log_(5)x(log_(e)5)^(2))+3x^(2)

If log_(10) x+log_(10) y= 3 and log_(10) x-log_(10) y=1, then x and y are respectively a. 10 and 100 b. 100 and 10 c. 1000 and 100 d. 100 and 1000