Home
Class 12
MATHS
d/(dx)(e^xlogsin2x)=...

`d/(dx)(e^xlogsin2x)=`

A

`e^x (log sin2x +2cot2x)`

B

`e^x (log cos2x +2 cot 2x)`

C

`e^x (log cos2x +cot2x)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

d/(dx) (e^(x sin x)) =

d/(dx)[e^xlog(1+x^2)]=

d/(dx)e^(log sqrt(x)}=

(d)/(dx)(log e^(x)*log x)

(d)/(dx)(e^(x)+log x+tan x+x^(6))

d/dx (e^(sin√x))

d/(dx)log_|x|e=

(d)/(dx)(e^(log_(e)x^(3)))

The differentiation of log _(e)x,x>0is(1)/(x)* i.e.(d)/(dx)(log_(e)x)=(1)/(x)

The differentiation of sin x with respect to x is cos x* i.e.(d)/(dx)(sin x)=cos x