Home
Class 12
MATHS
d/(dx)[e^xlog(1+x^2)]=...

`d/(dx)[e^xlog(1+x^2)]=`

A

`e^x[log(1+x^2)+(2x)/(1+x^2)]`

B

`e^x[log(1+x^2)-(2x)/(1+x^2)]`

C

`e^x[log(1+x^2)+(x)/(1+x^2)]`

D

`e^x[log(1+x^2)-(x)/(1+x^2)]`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

d/(dx)(e^xlogsin2x)=

d/(dx)e^(log sqrt(x)}=

(d)/(dx)(e^(log_(e)x^(3)))

(d)/(dx)(log e^(x)*log x)

d/(dx)log_|x|e=

d/(dx) (e^(x sin x)) =

d/(dx)(e^sqrt(1-x^2).tanx)=

(d)/(dx)[log((x^(n))/(e^(x)))]=

(d)/(dx)(3^x)(e^x)

The differentiation of log _(e)x,x>0is(1)/(x)* i.e.(d)/(dx)(log_(e)x)=(1)/(x)