Home
Class 12
MATHS
If y=e^(1+log(e)x), then the value of (d...

If `y=e^(1+log_(e)x)`, then the value of `(dy)/(dx)` is equal to

A

e

B

1

C

0

D

`log_e x e^(log_e e x)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If y = x^(1/x) , the value of (dy)/(dx) at x =e is equal to

Let y = y (x) be the solution of the differential equation dy = e^(alpha . x + y) dx , alpha in N . If y ( log_(e) 2) = log _(e) 2 and y(0) = log _(e) ((1)/(2)) , then the value of alpha is equal to _____

If x=e^(x/y), then (dy)/(dx) is equal to

If y=e^(log_(e)x)," then "(dy)/(dx)=

Let y= y(x) be solution of the differential equation log_(e)((dy)/(dx)) =3x+4y , with y(0)=0. If y(-(2)/(3)log_(e)2)=alpha log_(e)2 , then the value of alpha is equal to

If y=ln(e^(mx)+e^(-mx)) . Then what is the value of (dy)/(dx) at x=0 ?

If y=sqrt(x log_(e)x), then find (dy)/(dx) at x=e

if y=(xsinx)/(log_(e)x), then find (dy)/(dx)

If y=e^(x+3 log x) , then dy/dx=?