Home
Class 12
MATHS
For the function f(x)=x^(2)-6x+8, 2 le x...

For the function `f(x)=x^(2)-6x+8, 2 le x le 4 `, the value of x for which f'(x) vanishes is

A

`9/4`

B

`5/2`

C

3

D

`7/2`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)=cos x, 0 le x le pi is

If f (x) =x ^(2) -6x + 9, 0 le x le 4, then f(3) =

If function f(x) = x-|x-x^(2)|, -1 le x le 1 then f is

If f (x) =x ^(2) -6x +5,0 le x le 4 then f (8)=

The range of the function f(x)=|x-1|+|x-2|, -1 le x le 3, is

if f(x) = {:{ (1+x, ,0 le x le2), (3-x, ,2 lt x le3):} Determine the points of discontinuity of the function f (f(x)) (ii) Check the continuity of the function f(x) = [x]^(2) - [x^(2)] (iii) find the values of a and b if f is continuous at x = pi/2 f(x)= {:{((8/5)""^(tan8x)/(tan 5x) , , 0 lt x lt pi//2),(a+4, , x=pi//2), ((1+|cot x|)""^(b|tan x|)/a, , pi/2 lt x lt pi):}

If f(x)=6-5x^2 , where -4 le x le 5 , then the range of the function f is given by

If f(x)=2x+3 , where 1 le x le 2 , then the range of the function f is given by

If the function f(x)=x^(2)+bx+3 is not injective for values of x in the interval 0 le x le 1 then b lies in