Home
Class 12
MATHS
d/(dx)(e^sqrt(1-x^2).tanx)=...

`d/(dx)(e^sqrt(1-x^2).tanx)=`

A

`e^(sqrt(1-x^2))[sec^2 x+(x tan x)/(sqrt(1-x^2))]`

B

`e^(sqrt(1-x^2))[sec^2 x-(x tan x)/(sqrt(1-x^2))]`

C

`e^(sqrt(1-x^2))[sec^2 x+(tan x)/(sqrt(1-x^2))]`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

d/(dx)e^(log sqrt(x)}=

Differentiate the following w.r.t. x : e^(sqrt(1-x^(2)))*tanx

d/(dx)[e^xlog(1+x^2)]=

d/(dx)(e^xlogsin2x)=

(d)/(dx)(e^(x)sin sqrt(3)x) equals-

Differentiate e^(cos)^^(-1)(sqrt(1-x^(2)))

(d)/(dx)[e^(x)sin sqrt(3)x]=

(d)/(dx)(3^x)(e^x)

Differentiate (e^(x^(2))tan^(-1)x)/(sqrt(1+x^(2))) w.r.t. x.

(d)/(dx)[log_(e)e^(sin(x^(2)))] is equal to