Home
Class 12
MATHS
If : f(x)=(sin^(2)x)/(1+cotx)+(cos^(2)x)...

If : `f(x)=(sin^(2)x)/(1+cotx)+(cos^(2)x)/(1+tanx)," then: "f'((pi)/(4))=`

A

`sqrt3`

B

`1/(sqrt3)`

C

0

D

`-sqrt3`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(1-sin^(2)x)/(1+sin^(2)x)," then "3f'((pi)/(4))-f((pi)/(4))=

(1+cos4x)/(cotx-tanx)

f(x)=((1-cos x)/(1-sin x)), then f'((pi)/(2)) is equal to

If f(x)=det[[sin^(2)x,cos^(2)x,1cos^(2)x,sin^(2)x,1x-12,12,2]] then f'((pi)/(2))=

If f(x) is continuous at x=pi/2 , where f(x)=(sqrt(2)-sqrt(1+sin x))/(cos^(2)x) , for x!= pi/2 , then f(pi/2)=

If int(sin2x)/(sin^(4)x+cos^(4)x)dx=tan^(-1)[f(x)]+c , then f(pi/3)=

Let (d)/(dx)(f(x))=((sin^(12)x-cos^(12)x)/((sin^(2)x-cos^(2)x)(1-3sin^(2)x cos^(2)x))) be such that f(0)=0 then f((pi)/(2)) equals (k pi)/(16). Find the value of k(k in N)

if f(x)=(sqrt(2)cos x-1)/(cot x-1),x!=(pi)/(4) Find the value of f((pi)/(4)) so that f(x) becomes continuous at x=(pi)/(4)

If f(x) is continuous at x=(pi)/(4) where f(x)=(2sqrt(2)-(cos x+sin x)^(3))/(1-sin2x) ,for x!=(pi)/(4) then f((pi)/(4))=

if int e^(sin x)(x cos^(3)x-sin x)/(cos^(2)x)dx and f(0)=1 then f(pi)= is