Home
Class 12
MATHS
If tan(x+y)+tan(x-y)=1 , find (dy)/(dx) ...

If `tan(x+y)+tan(x-y)=1` , find `(dy)/(dx)` .

A

`(sec^2 (x+y) +sec^2 (x-y))/(sec^2(x+y) - sec^2(x-y))`

B

`(sec^2 (x+y) +sec^2 (x-y))/(sec^2(x-y) - sec^2(x+y))`

C

`(sec^2 (x+y) -sec^2 (x-y))/(sec^2(x+y) + sec^2(x-y))`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If x+y=tan^(-1)(xy), find (dy)/(dx)

y=(x^(2)+1)tan^(-l)x find (dy)/(dx)

y=x^(tan(x))+(tan x)^(x) , find (dy)/(dx)

If y=tan^(-1)((1-x)/(1+x)), find (dy)/(dx)

If x=tan^(-1)t, and y=t^(3), find (dy)/(dx)

y ^ (cos x) + (tan ^ (- 1) x) ^ (y) = 1, find (dy) / (dx)

y^(2)+xy=tan(x+y) then find (dy)/(dx)=?

If y=x^(tan x)+(tan x)^(x) , then find (dy)/(dx)

If y=e^((tan^(-1)x)^(3) then find (dy)/(dx)