Home
Class 12
MATHS
If x^y = e^(x-y) then (dy)/(dx)=...

If ` x^y = e^(x-y)` then ` (dy)/(dx)`=

A

`logx.[log(ex)]^(-2)`

B

`logx. [log (ex)]^2`

C

`logx.(log x)^2`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(2y)=e^(x-y)," then "(dy)/(dx)=

If x^(y) = e^(2(x-y)), "then" (dy)/(dx) is equal to

If x^(y)=e^(x-y), then find (dy)/(dx)atx=1

If y=e^(x)+x then (dy)/(dx)=

If e^(x+y) =cos (x-y) ,then (dy)/(dx)=

If y=e^(x)x^(2) then (dy)/(dx)=

If x^(y)=e^(x-y), then show that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^(y)=e^(x-y) then prove that (dy)/(dx)=(ln x)/((1+ln x)^(2))

If x^(y)=e^(x-y) then prove that (dy)/(dx)=(logx)/((1+logx)^(2))