Home
Class 12
MATHS
x=a(cos t + log tan (t/2)), y =a sin t t...

`x=a(cos t + log tan (t/2)), y =a sin t` then find `dy/dx`

A

tan t

B

`-tan t `

C

cot t

D

`-cot t`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=a (cos t +log (tan ((t)/(2)) )) ,y =a sin t ,then (dy)/(dx) =

If x=a(cos t+(1)/(2)log tan^(2)t) and y=a sin t then find (dy)/(dx) at t=(pi)/(4)

If x=a(cos t+(log tan)(1)/(2)),y=a sin t then (dy)/(dx) is equal to

If x=a(cos t+(log tan t)/(2)),y=a sin t evaluate (d^(2)y)/(dx^(2)) at t=(pi)/(3)

If y=a sin t, x=a cos t then find (dy)/(dx) .

If x=cos t+(log tan t)/(2),y=sin t, then find the value of (d^(2)y)/(dt^(2)) and (d^(2)y)/(dx^(2)) at t=(pi)/(4)

If x=cos t+(log tan t)/(2),y=sin t, then find the value of (d^(2)y)/(dt^(2)) and (d^(2)y)/(dx^(2))a=(pi)/(4)

If x=a cos^3 t " and "y=a sin ^3 t "then find " dy/dx

If x=a(t+sin t),y=a(1+cos t), then find (dy/dx)