Home
Class 12
MATHS
If y = (e^x logx)/x^2 then (dy)/(dx)...

If `y = (e^x logx)/x^2` then `(dy)/(dx)`

A

`(e^x [1+(x+2) logx])/(x^3)`

B

`(e^x [1-(x-2) logx])/(x^4)`

C

`(e^x [1-(x-2) logx])/(x^3)`

D

`(e^x [1+(x-2) logx])/(x^3)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If y= (log x) ^(logx) ,then (dy)/(dx)=

If y=e^(1+logx)," then: "(dy)/(dx)

If y=e^(x)x^(2) then (dy)/(dx)=

If y=x^(logx) ,then (dy)/(dx)=

If , y=(logx )^(sin x ) ,then (dy)/(dx) =

If y= ( log sin x) (logx ) ,then (dy)/(dx)

If y= (sin x)^(logx ),then (dy)/(dx)=

If y=x^(logx)+(logx)^x then find (dy)/(dx)

if y^(x)=e^(y-x) then (dy)/(dx)

If x^(y) = e^(2(x-y)), "then" (dy)/(dx) is equal to