Home
Class 12
MATHS
(d)/(dx)[tan^(-1)(cotx)+cot^(-1)(tanx)]=...

`(d)/(dx)[tan^(-1)(cotx)+cot^(-1)(tanx)]=`

A

0

B

1

C

`-1`

D

`-2`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

(d)/(dx)[tan^(-1)(cosecx+cotx)]=

(d)/(dx)[sec(tan^(-1)x)]=

(d)/(dx)[tan^(-1)((2+3tanx)/(3-2tanx))]=

(d)/(dx)(tan^(-1)(birth x))

At x=(pi)/(4),(d)/(dx)[tan^(-1)((cosx)/(1+sinx))]=

(d)/(dx)[tan^(-1)[(secx-tanx)]=

d/(dx) [tan^(-1)(sqrt(x))] =

(d)/(dx)[tan^-1((sqrt(1+x^(2))-1)/(x))]=

(d)/(dx)[tan^(-1)sqrt(1+x^(2))-cot^(-1)(-sqrt(1+x^(2)))]=

(d)/(dx)[tan{tan^(-1)((x)/(a))-tan^(-1)((x-a)/(x+a))}]=