Home
Class 12
MATHS
If f(x) =1 + nx+ (n(n-1))/(2) x^(2) + (n...

If `f(x) =1 + nx+ (n(n-1))/(2) x^(2) + (n(n-1)(n-2))/(6) x^(3)`
` + ...+x^(n) , "then" f''(1) ` is equal to

A

`n(n-1)2^(n-2)`

B

`n(n-1)2^n`

C

`n(n-1) 2^(n-1)`

D

`(n-1) 2^(n-1)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) =1 + nx+ (n(n-1))/(2) x^(2) + (n(n-1)(n-2))/(6) x^(3) + ...+ n^(x) , "then" f''(1) is equal to

If f(x) = log ((m(x))/(n(x))), m(1) = n(1) = 1 and m'(1) = n'(1) = 2, " then" f'(1) is equal to

If f(x)=(a-n^(n))^(1//n) where a gt 0 and n in N , then f[f(x)] is equal to :

let f(x)=lim_(n rarr oo)(x^(2n)-1)/(x^(2n)+1)

Let f(x)=(1-x^(n+1))/(1-x) and g(x)=1-(2)/(x)+(3)/(x^(2))-...+(-1)^(n)(n+1)/(x^(n)) Then the constant term in f'(x)xx g(x) is equal to -

Let F: (0,2) to R be defined as f (x) = log _(2) (1 + tan ((pix)/(4))). Then lim _( n to oo) (2)/(n) (f ((1)/(n )) + f ((2)/(n)) + …+ f (1) ) is equal to

- (((n) / (1)) * ((1 + x) / (1 + nx)) + ((n (n-1)) / (1.2)) ((1 + 2x) / ((1 + nx) ^ (2))) - ((n (n-1) (n-2)) / (1.2.3)) ((1 + 3x) / ((1 + nx) ^ (3)))