Home
Class 12
MATHS
"If "y= sin x +e^(x)," then "(d^(2)x)/(d...

`"If "y= sin x +e^(x)," then "(d^(2)x)/(dy^(2))=`

A

`(-sinx +e^x)^(-1)`

B

`(sin x - e^x)/((cosx+e^x)^2)`

C

`(sin x - e^x)/((cosx+e^x)^3)`

D

`(sin x + e^x)/((cosx+e^x)^3)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=sinx+e^(x)," then "(d^(2)x)/(dy^(2)) equals

If y=x+e^(x), find (d^(2)x)/(dy^(2))

If y=x+e^(x), then (d^(2)x)/(dy^(2)) is equal to

If y=x+e ^(x), then ((d^(2)y)/(dy ^(2)))_(x = ln 2) is :

If y = e^(x) sin x then (d^(2)y)/(dx^(2)) =

If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/(dx)=- ky, where k =

If y= x^(2) e^(x) ,then ( d^(2)y)/(dx^(2)) -(dy)/(dx) =

If y=sin(log_(e)x) , then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx) is equal to

If y=x^(2)e^(x),"show that "(d^(2)y)/(dx^(2))-(dy)/(dx)-2(x+1)e^(x)=0