Home
Class 12
MATHS
If y= tan^(-1) "" ((log(e //x^2))/( log...

If ` y= tan^(-1) "" ((log(e //x^2))/( log (ex^2)))+ tan^(-1) "" ((3+2 log x)/(1-6 log x))` then ` (d^2 y)/(dx^2)` is

A

`x^2`

B

`x`

C

1

D

0

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=tan^(-1)((log((e)/(x^(2))))/(log(ex^(2))))+tan^(-1)((3+2log x)/(1-6log x)) then (d^(2)y)/(dx^(2)) is (a) 2(b)1(c)0(d)-1

f(x)=tan^(-1){(log((e)/(x^(2))))/(log(ex^(2)))}+tan^(-1)((3+2log x)/(1-6log x)) then find (d^(n)y)/(dx^(n))

If y=tan^(-1){((log)_(e)(e/x^(2)))/((log_(e)(ex^(2)))}+tan^(-1)((3+2(log)_(e)x)/(1-6(log)_(e)x)), then (d^(2)y)/(dx^(2))=(a)2(b)1(c)0(d)-1

If quad y=tan^(-1){(log_(e)((e)/(x^(2))))/(log_(e)(ex^(2)))}+tan^(-1)((3+2log_(e)x)/(1-6log_(e)x)), then (d^(2)y)/(dx^(2))=

If y=tan ^(-1) ((log (ex))/( log ((e)/( x)))) ,then (dy)/(dx) =

If y = tan ^ (- 1) [(1-2log x) / (1 + 2log x)] + tan ^ (- 1) [(3 + 2log x) / (1-6log x)]

If y=tan^(-1)[(log(e//x^(3)))/(log(ex^(3)))]+tan^(-1)[(log(e^(4)x^(3)))/(log(e//x^(12)))]," then "(d^(2)y)/(dx^(2))=

If y=tan^(-1)[(logex)/(log (e/x))] + tan^(-1)[(8-logx)/(1+8 logx)] , then (d^(2)y)/(dx^(2)) is