Home
Class 12
MATHS
If a=A cos 4t+B sin4t, then (d^(2)x)/(dt...

If `a=A cos 4t+B sin4t,` then `(d^(2)x)/(dt^(2))` is equal to

A

`-16x`

B

16x

C

x

D

`-x`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=A cos 4t+B sin4t, then (d^(2)x)/(dt^(2)) is equal to

int(t^(2)+1)/(t^(4))dt

If x=cos(2t)and y=sin^(2)t , then what is (d^(2)y)/(dx^(2)) equal to?

x=t cos t,y=t+sin t. Then (d^(2)x)/(dy^(2)) at t=(pi)/(2) is

If x=e^t sin t , y=e^t cos t , t is a parameter , then (d^2y)/(dx^2) at (1,1) is equal to

x=a cos t,y=a sin t then (d^(2)(y))/(dx^(2)) at t=(pi)/(3),(pi)/(6),(pi)/(2),(pi)/(4)

x=t cos t,y=t+sin t. Then (d^(2)tau)/(dy^(2)) at t=(pi)/(2) is (pi+4)/(2)(b)-(pi+4)/(2)-2(d) none of these

If x=a cos^(4)t, y=b sin^(4)t then (dy)/(dx) at t = (3 pi)/(4) is

If f(x) =int_(0)^(x) sin^(4)t dt , then f(x+2pi) is equal to