Home
Class 12
MATHS
If x= sin t and y= sinp t, then the valu...

If `x= sin t` and `y= sinp t`, then the value of `(1-x^2) (d^2y)/(dx^2) - x(dy)/(dx) +p^2 y` is equal to

A

0

B

1

C

`-1`

D

`sqrt2`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=sin t and y=sin3t, then the value of k for which (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)+ky=0 is

If x=sin t and y=sin pt, prove that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)+p^(2)y=0

If x=a(sin t-t cos t),y=a sin t then find the value of (d^(2)y)/(dx^(2))

If y=sin^(-1)x ,then prove that (1-x^(2))(d^(2)y)/(dx^(2))=x(dy/dx)

If y=sin^(-1)x then prove that (1-x^(2))(d^(y))/(dx^(2))-x(dy)/(dx)=0

If x=sin t,y=sin2t, prove that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)+4y=0

If y=sin (msin ^(-1) x),then (1-x^(2))(d^(2)y)/(dx^(2))-x( dy)/(dx)=

If y=(sin^(-1)x)^2 then prove that (1-x^(2))(d^2y)/(dx^2)-x(dy)/(dx)-2=0 .