Home
Class 12
MATHS
The minimum value of the function f(x)=2...

The minimum value of the function `f(x)=2x^3-21 x^2+36 x-20` is
(a) `-128`
(b) `-126`
(c) `-120`
(d) none of these

A

`-128`

B

`-126`

C

`-120`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The minimum value of the function f(x)=7-20x+11x^2 is

The minimum value of the function f(x) = 2|x - 1| + |x - 2| is

The minimum value of the function f (x) =x^(3) -3x^(2) -9x+5 is :

The minimum value of the function f(x)=2x^(3)-21x^(2)+36x-20 is -128(b)-126(c)-120(d) none of these

The minimum value of the function f(x)=2x^(4)-3x^(2)+2x-5 , x in [-2,2] is

The minimum value of the function f(x)=2x^(4)-3x^(2)+2x-5 , x in [-2,2] is

The Minimum value of the function f(x)=2x^(4)-3x^(2)+2x-5 , x in [-2,2] is

If f(x)=2x^(3)-21 x^(2)+36x-20 , then

The minimum value of the function f(x)=2tan x+3cot x where x in(0 ,(pi)/(2)) is

The minimum value of the function f(x)=2tan x+3cot x where x in(0, (pi)/(2)) is