Home
Class 12
MATHS
The minimum value of 4e ^(2x) + 9e^(-2x)...

The minimum value of `4e ^(2x) + 9e^(-2x) ` is

A

11

B

12

C

10

D

14

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The minimum value of 4e^(x)+9e^(-x) is

The minimum value of (x - 2) (x-9) is

The minimum value of e^((2x^(2)-2x+1)sin^(2)x) is e(b)(1)/(e)(c)1(d)0

The minimum value of e^((2x^(2)-2x+1)sin^(2)x) is

The minimum value of sqrt(e^(x^(2)) -1) is

Find minimum value of (9-x) (2-x)

The maximum value of x^(4)e^(-x^(2)) is (A) e^(2)(B)e^(-2)(C)12e^(-2)(D)4e^(-2)

If f(x)= e^(coscos^-1x^2+tancot^-1 x^2), then minimum value of f(x) is (A) e (B) e^2 (C) e^(2/3 (D) none of these

The minimum value of 5^(x)+3^(x)+e^(x)+5^(-x)+3^(-x)+e^(-x) is :