Home
Class 12
MATHS
Given the function f(x) = x^(2) e^(-2x),...

Given the function `f(x) = x^(2) e^(-2x), x gt 0`. Then f(x) has the maximum value equal to

A

`1/e`

B

`1/(2e)`

C

`1/(e^2)`

D

`4/(e^4)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Given the function f (x) =(a ^(x) + a ^(-x))/(2), a gt 2, then f (x+y) + f(x -y) =

The function f(x)=x^(2)e^(x) has maximum value

The function f(x)=x^(2)e^(x) has minimum value

The function f(x)=x^(2), x in R has no maximum value.

Given f(x)=x^(1/x),(x>0) has the maximum value at x=e then

Consider the function f(x)=1/x^(2) for x gt 0 . To find lim_(x to 0) f(x) .