Home
Class 12
MATHS
The Minimum value of the function f(x)=x...

The Minimum value of the function `f(x)=x^(3)-18x^(2)+96x` in `[0,9]`

A

126

B

0

C

135

D

160

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The minimum value of the function f (x) =x^(3) -3x^(2) -9x+5 is :

The Minimum value of the function f(x)=2x^(4)-3x^(2)+2x-5 , x in [-2,2] is

Minimum value of the function f(x)= (1/x)^(1//x) is:

The minimum value of the function f(x)=2x^(4)-3x^(2)+2x-5 , x in [-2,2] is

The minimum value of the function f(x)=2x^(4)-3x^(2)+2x-5 , x in [-2,2] is

Find the maximum value of the function f(x)=5+9x-18x^(2)

The minimum value of the function f(x) = x log x is

The least value of the function f(x)=x^(3)-18x^(2)+96x in the interval [0,9] is 126(b)135(c)160(d)0

The maximum value of the function f(x)=3x^(3)-18x^(2)+27x-40 on the set S={x in R: x^(2)+30 le 11x} is:

Determine the maximum and minimum values of the function f(x) = 2x^(3) - 21 x^(2) + 36x-20