Home
Class 12
MATHS
If a^(2)x^(4) + b^(2)y^(4)=c^(6), then m...

If `a^(2)x^(4) + b^(2)y^(4)=c^(6)`, then maximum value of xy is

A

`(c^2)/(sqrt(ab))`

B

`(c^3)/(ab)`

C

`(c^3)/(sqrt(2ab))`

D

`(c^3)/(2ab)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If a^(2)x^(4)+b^(2)y^(4)=c^(6), then the maximum value of xy is (a) (c^(2))/(sqrt(ab)) (b) (c^(3))/(ab)(c^(3))/(sqrt(2ab)) (d) (c^(3))/(2ab)

If a^(2)x^(4)+b^(2)y^(4)=c^(6), then the maximum value of xy is (a) (c^(3))/(2ab) (b) (c^(3))/(sqrt(2ab)) (c) (c^(3))/(ab) (d) (c^(3))/(sqrt(ab))

If x+y=4, then maximum value of xy is

If x-2y=4 the minimum value of xy is

If x – 2y = 4, the minimum value of xy is

if y^(2)(y^(2)-6)+x^(2)-8x+24=0 , then maximum value of sqrt(y^(4)+x^(2)) is