Home
Class 12
MATHS
The function f(x)=1/(1+x^2) is decreasin...

The function `f(x)=1/(1+x^2)` is decreasing in the interval
(i) `(-infty,-1)`
(ii) `(-infty,0)`
(iii) `(1,infty)`
(iv) `(0,infty)`

A

`(-oo, -1]`

B

`(-oo, 0]`

C

`[1, oo)`

D

`(0, oo)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

The function sinx-bx+c will be increasing in the interval (-infty,infty) , if

The exhaustive values of x for which f(x) = tan^-1 x - x is decreasing is (i) (1,infty) (ii) (-1,infty) (iii) (-infty,infty) (iv) (0,infty)

Show that the function f(x)= x^(2) is strictly increasing function in the interval ]0,infty[ .

The domain of f(x)=log_x 12 is (i) (0,infty) (ii ) (0,1)cup (1,infty) (iii) (-infty,0) (iv) (2,12)

The solution set of the inequation ||x|-1| < | 1 – x|, x in RR, is (i)(-1,1) (ii)(0,infty) (iii)(-1,infty) (iv) none of these

Suppose f(x) = 2x^(2) - 7 x + 2029 is such that f decreases in the interval (- infty, a) increases in the interval [a, infty) , then a is equal to _______

If f(x) = x^(3) + bx^(2) + cx +d and 0lt b^(2) lt c .then in (-infty, infty)