Home
Class 12
MATHS
If f(x)=sinx-cosx, the function decreasi...

If `f(x)=sinx-cosx`, the function decreasing in `0 le x le 2pi` is

A

`[5pi//6, 3pi//4]`

B

`[pi//4, pi//2]`

C

`[3pi//2, 5pi//2]`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)=cos x, 0 le x le pi is

If 0 le x le pi/2 then

The interval of increase of the function y= x-2 sin x " if " 0 le x le 2pi , is

Write the interval for which the function f(x) = cos x, 0 le x le 2pi is decreasing

The number of solutions of the equation x^(3)+x^(2)+4x+2sinx=0 in 0 le x le 2pi is

Let f'(sinx)lt0andf''(sinx)gt0,AAx in (0,(pi)/(2)) and g(x)=f(sinx)+f(cosx), then find the interval in which g(x) is increasing and decreasing.

The number of distinct roots of |(sinx, cosx, cosx),(cosx, sinx, cosx),(cosx,cosx,sinx)|=0 in the interval -pi/4 le x le pi/4 is (A) 0 (B) 2 (C) 1 (4) 2

Find minium value of (9x^(2)sin^(2)x+4)/(2sinx.x) in the interval 0 le x le pi .