Home
Class 12
MATHS
In the Mean value theorem f(b)-f(a)=(b...

In the Mean value theorem
`f(b)-f(a)=(b-a)f'(c),` if a=4, b=9
and f(x)=`sqrtx`, then the value of c is

A

`8.00`

B

5.25

C

`4.00`

D

6.25

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

In the Mean Value theorem (f(b)-f(a))/(b-a)=f'(c) if a=0,b=(1)/(2) and f(x)=x(x-1)(x-2) the value of c is

From mean value theoren :f(b)-f(a)=(b-a)f'(x_(1));a

If, from mean value theorem , f'(x_(1))=(f(b)-f(a))/(b-a), then:

From mean value theoren : f(b)-f(a)=(b-a)f^(prime)(x_1); a lt x_1 lt b if f(x)=1/x , then x_1 is equal to

Find 'c' of the mean value theorem, if: f(x) = x(x-1) (x-2), a=0, b=1//2

The mean value theorem is f(b) - f(a) = (b-a) f'( c) . Then for the function x^(2) - 2x + 3 , in [1,3/2] , the value of c:

Let f be a function such that f(x).f\'(-x)=f(-x).f\'(x) for all x and f(0)=3 . Now answer the question:The value of f(x)f(-x) for all x is (A) 9 (B) 4 (C) 16 (D) 12

If f(x) = |(0, x-a, x-b),(x+a, 0, x-c),(x+b, x+c, 0)| , then the value of f(0) is :