Home
Class 12
MATHS
If y = f((2x-1)/(x^(2)+1))and f'(x) =...

If ` y = f((2x-1)/(x^(2)+1))and f'(x) = sin^(2) x, " then " (dy)/(dx) ` = ……. .

A

`(6x^2 -2x +2)/((x^2 +1)^2) sin((2x-1)/(x^2+1))^2`

B

`(6x^2 -2x +2)/((x^2 +1)^2) sin^2((2x-1)/(x^2+1))`

C

`(-2x^2 +2x +2)/((x^2 +1)^2) sin^2 ((2x-1)/(x^2+1))`

D

`(-2x^2 +2x +2)/((x^2 +1)^2) sin ((2x-1)/(x^2+1))^2`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=f((2x-1)/(x^(2)+1)) and f^'(x)=sinx^(2) , then (dy)/(dx) is equal to

If y=f((2x-1)/(x^(2)+1)) and f'(x)=sin x^(2), find (dy)/(dx)

y=f((2x-1)/(x^(2)-1)) and f'(x)=sin x then (dy)/(dx)

If y=f((2x-1)/(x^(2)+1)) and f^(')(x)=sinx^(2) then dy//dx at x=0 is

If y=f(x^(2)) and f'(x) =sin x^(2)." Find "(dy)/(dx)

If y=f(cosx)" and "f'(x)=cos^(-1)x," then "(dy)/(dx)=

If y=f((2x+3)/(3-2x)) and f(x)=sin(logx) , then (dy)/(dx)=

If f'(x)=sqrt(2x^(2)-1) and y=f(x^(2)), then (dy)/(dx) at x=1, is

If y=sin^(-1)(2^(x)),"then "dy/dx=