Home
Class 12
MATHS
The derivative of tan^(-1) ((sinx -cosx)...

The derivative of `tan^(-1) ((sinx -cosx)/(sinx +cosx))`, with respect to `(x)/(2)`, where `(x in(0,(pi)/(2))` is:

A

2

B

1

C

`1/2`

D

`2/3`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the derivative of tan^(-1)((cosx - sinx)/(cosx + sinx)) with respect to 'x'

The derivative of tan^(-1)[(sin x)/(1+ cosx)] with respect to tan^(-1)[(cosx)/(1+sinx)] is

Differentiate tan^(-1)((sinx)/(1+cosx)), -pi

(sinx+cosx)/(sinx-cos x)-(sec^(2)x+2)/(tan^(2)x-1)= , where x in (0, (pi)/(2))

Differentiate tan^(-1)((1+cosx)/sinx) with respect to x.

tan^(-1)((cosx+sinx)/(cos x-sinx))

tan^(-1) ((cosx - sinx)/(cosx + sinx)) , 0< x < pi

The derivative of ln(x+sinx) with respect to (x+cosx) is

The derivative of ln(x+sinx) with respect to (x+cosx) is