Home
Class 12
MATHS
Let f(x)=x^2+(1/x^2) and g(x)=x-1/x xin...

Let `f(x)=x^2+(1/x^2)` and `g(x)=x-1/x` `xinR-{-1,0,1}`. If `h(x)=(f(x)/g(x))` then the local minimum value of `h(x)` is: (1) 3 (2) `-3` (3) `-2sqrt(2)` (4) `2sqrt(2)`

A

`-2sqrt2`

B

`2sqrt2`

C

3

D

`-3`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=x^(2)+((1)/(x^(2))) and g(x)=x-(1)/(x)xi nR-{-1,0,1}. If h(x)=((f(x))/(g(x))) then the local minimum value of h(x) is: (1)3(2)-3(3)-2sqrt(2)(4)2sqrt(2)

Let f(x)=1+sqrt(x) and g(x)=(2x)/(x^(2)+1)

If f(x)=sqrt(2-x) and g(x)=sqrt(1-2x) ,then the domain of f[g(x)] is:

Let f(x)={x-1,-1<=x<0 and x^(2),0<=x<=1,g(x)=sin x and h(x)=f(|g(x)|)+[f(g(x)) Then

If int(x-1)/(x^(2)sqrt(2x^(2)-2x-1))dx=(sqrt(f(x)))/(g(x))+c then the value of f(x) and g(x) is

If f(x) = x^(2) and g(x) = (1)/(x^(3)) . Then the value of (f(x)+g(x))/(f(-x)-g(-x)) at x = 2 is

If f(x)=x^2+(1)/(x^2), g(x)=x^4+(1)/(x^4) and a+(1)/(a)=3 , then the respectively values of f(a) and g(a) are

If f(x)=cos^(-1)(x^((3)/(2))-sqrt(1-x-x^(2)+x^(3))),AA 0 le x le 1 then the minimum value of f(x) is

If (f(x))/(g(x))=h(x) where g(x)=sqrt(1-|(x^(2))/(x-1)|) and h(x)=(1)/(sqrt(|x-1|-[x])) then the domain of f(x)