Home
Class 12
MATHS
If f(x)=x e^(x(1-x)), then f(x) is...

If `f(x)=x e^(x(1-x))`, then f(x) is

A

Increasing on `[-1/2, 1]`

B

Decreasing on R

C

Increasing on R

D

Decreasing on `[-1/2, 1]`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If (d(f(x)))/(dx) = e^(-x) f(x) + e^(x) f(-x) , then f(x) is, (given f(0) = 0)

If f(x)=(x-1)/(x+1), then f(f(ax)) in terms of f(x) is equal to (a) (f(x)-1)/(a(f(x)-1)) (b) (f(x)+1)/(a(f(x)-1))(c)(f(x)-1)/(a(f(x)+1))(d)(f(x)+1)/(a(f(x)+1))

If f(x) = x^(1//x) , " then: f''(e) is

Let f:Rto R be a functino defined by f (x) = e ^(x) -e ^(-x), then f'(1)=

If int (e ^(x) (1+ sin x )dx)/( 1+ cos x ) = e ^(x) f (x) + C, then f (x) is equal to

(1) If f(x)=a^(x)*e^(x^(2))" then find "f'(x)