Home
Class 12
MATHS
f(x)=tan^(-1)(sinx+cosx), x gt0 is alway...

`f(x)=tan^(-1)(sinx+cosx), x gt0` is always and increasing function on the interval

A

`(0, pi)`

B

`(0, pi//2)`

C

`(0, pi//4)`

D

`(0, 3pi//4)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Show that f(x)=tan^(-1)(sin x+cos x) is an increasing function on the interval (0,pi/4)

Show that the function fgivenbyf(x)=tan^(-1)(sin x+cos x)x>0 is always an strictly increasing function in (0,(pi)/(4))

The function f(x)=tan^(-1)(sinx+cosx) is an increasing function in

f(x)=tan^(-1)(sinx+cosx),"then "f(x) is increasing in

f(x) = e^(sinx+cosx) is an increasing function in

The function f(x)=x+(1)/(x)(x!=0) is a non- increasing function in the interval

Prove the following f(x)=tan^(-1)(sinx+cosx) is strictly decreasing function on ((pi)/(4),(pi)/(2)) .

The function f(x)=cos((pi)/(x)),(x!=0) is increasing in the interval

If f(x) = x^(2) e^(-x^(2)/a^(2) is an increasing function then (for a gt 0) , x lies in the interval