Home
Class 12
MATHS
f(x)=|x loge x| monotonically decreases ...

`f(x)=|x log_e x|` monotonically decreases in `(0,1/e)` (b) `(1/e ,1)` `(1,oo)` (d) `(1/e ,oo)`

A

`(e, oo)`

B

`(0, 1//e)`

C

`[1//e, 1]`

D

(1, e)

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=|x log_(e)x| monotonically decreases in (0,(1)/(e))( b) ((1)/(e),1)(c)(1,oo)(d)((1)/(e),oo)

The function f(x)=x^(x) decreases on the interval (a) (0,e)(b)(0,1)(c)(0,1/e)(d)(1/e,e)

The function x^(x) decreases in the interval (0,e)(b)(0,1)(0,(1)/(e))(d) none of these

Let f:(0,oo)vec R be given by f(x)=int_((1)/(x))^(x)(e^(-(t+(1)/(t)))dt)/(t), then (a)f(x) is monotonically increasing on [1,oo)(b)f(x) is monotonically decreasing on (1,oo)(b)f(x) is an odd function of x on R

int_(0)^(oo)(1)/(1+e^(x))dx=

If e^(x)+e^(f(x))=e, then the range of f(x) is (-oo,1](b)(-oo,1)(1,oo)(d)[1,oo)

The domain of f(x)=log|log x|is(0,oo)(b)(1,oo)(c)(0,1)uu(1,oo)(d)(-oo,1)

Range of the function f(x)=(ln x)/(sqrt(x)) is (a) (-oo,\ e) (b) (-oo,\ e^2) (c) (-oo,2/e) (d) (-oo,1/e)

Let f(x)=a(x-x_1)(x-x_2)\ w h e r e\ a ,\ x_1a n d\ x_2\ are real numbers such that a\ !=0\ a n d\ x_1+\ x_2=0. Then which of the following statements is/are always correct? f(x) is increasing in (-oo,0)\ and decreasing in (0,oo) f(x) is decreasing in (-oo,0) and increasing in (0,oo) f(x) is non monotonic on R f(x) has an extremum point

If f(x)=log_(x^(2))(log x),quad then f'(x) at x=e is 0( b) 1 (c) (1)/(e) (d) (1)/(2)e