Home
Class 12
MATHS
f(x)=(e^(2x)-1)/(e^(2x)+1) is...

`f(x)=(e^(2x)-1)/(e^(2x)+1)` is

A

Increasing

B

Decreasing

C

Even

D

Odd

Text Solution

Verified by Experts

The correct Answer is:
A, D
Promotional Banner

Similar Questions

Explore conceptually related problems

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

The function f:R^(+)rarr(1,e) defined by f(x)=(x^(2)+e)/(x^(2)+1) is

(e^(2x)+2e^(x)+1)/(e^(x))

Find the possible values of a such that f(x)=e^(2x)-(a+1)e^(x)+2x is monotonically increasing for x in R.

the function f(x)=(x)/(e^(x)-1)+(x)/(2)+1 is

int(e^(2x)+1)/(e^(2x)-1)dx=

int (e^(2x)-1)/(e^(2x)+1) dx=?

Statement -1 : If I_(1)=int(e^(x))/(e^(4x)+e^(2x)+1)dx and I_(2)=int(e^(-x))/(e^(-4x)+e^(-2x)+1)dx , then I_(2)-I_(1)=(1)/(2)log((e^(2x)-e^(x)+1)/(e^(2x)+e^(x)+1))+C where C is an arbitrary constant. Statement -2 : A primitive of f(x) =(x^(2)-1)/(x^(4)+x^(2)+1) is (1)/(2)log((x^(2)-x+1)/(x^(2)+x+1)) .