Home
Class 12
MATHS
The maximum value of the function f(x)=...

The maximum value of the function `f(x)=3x^(3)-18x^(2)+27x-40` on the set `S={x in R: x^(2)+30 le 11x}` is:

A

`-122`

B

222

C

`-222`

D

122

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the maximum value of the function f(x)=5+9x-18x^(2)

The maximum value of the function f(x)=2x^(3)-15x^(2)+36x-48 on the set a={x|x^(2)+20le9x} is

The Minimum value of the function f(x)=x^(3)-18x^(2)+96x in [0,9]

Find the maximum value of f(x)=(40)/(3x^(4)+8x^(3)-18x^(2)+60)

The maximum value of the function ƒ(x) = e^x + x ln x on the interval 1 le x le 2 is

Find the maximum and minimum values of the function : f(x)=2x^(3)-15x^(2)+36x+11.

The function f(x)=x^(3)-(15)/(2)x^(2)+18x+2 increases in

If x satisfies the condition f(x)={x:x^(2)+30<=11x} then maximum value of function f(x)=3x^(3)-18x^(2)-27x-40 is equal to (A)-122(B)122(C)222(D)-222

The function f (x) = 4x ^(3) - 18x ^(2) + 27 x + 49 is increasing in :