Home
Class 12
MATHS
If y(x) = cot^(-1) ((sqrt(1+sinx)+sqrt(1...

If `y(x) = cot^(-1) ((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))), x in ((pi)/(2), pi)`, then `(dy)/(dx)` at `x=(5pi)/(6)` is :

A

`1/2`

B

`-1/2`

C

0

D

`-1`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=(x)/(2), x in (0,(pi)/(4))

If y="tan"^(-1)((sqrt(1+sinx)+sqrt(1-sinx)))/((sqrt(1+sinx)-sqrt(1-sinx)))," find "(dy)/(dx).

If y=cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))] , where 0lt xlt(pi)/(2), then (dy)/(dx) is equal to

Find (dy)/(dx) of y=cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))]

" If "y=cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))](0ltxltpi//2)," then "(dy)/(dx)=

If coty=(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))," then "(dy)/(dx)=

(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))=? (x is in IV quadrant)

Show that : cot^(-1) [(sqrt(1 + sinx) + sqrt(1 - sinx))/(sqrt(1 + sinx) - sqrt(1 - sinx))]= x/2