Home
Class 12
MATHS
int(dx)/(xsqrt(1-(logx)^(2))=...

`int(dx)/(xsqrt(1-(logx)^(2))=`

A

`cos^(-1) (log x )+c `

B

`x log (1- x^2)+C`

C

`sin^(-1) (log x ) +c `

D

`1//2 cos^(-1) (log x) +c`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

int(dx)/(xsqrt(1-x^(3)))dx=

int1/(x(1-logx)^(2))dx=

int(dx)/(x(1+(logx)^(2))) equals

int(sqrt(1+(logx)^2))/(x)dx=

int(logx)^(2)dx=?

int_(1)^(2)(dx)/(x(1+logx)^(2))

int(dx)/(xsqrt(x^(2)-4))