Home
Class 12
MATHS
int(1)/(1+3 sin ^(2)x)dx is equal to...

`int(1)/(1+3 sin ^(2)x)dx` is equal to

A

`1/3 tan^(-1) (3 tan^2 x)+c`

B

`(1)/(2) tan^(-1) (2 tan x)+C`

C

` tan^(-1) (tan x)+c`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

int(dx)/(1+3sin^(2)x)

int(1)/(1-sin^(2)x)dx

int(1)/(1-(sin x)/(2))dx

int(1)/(cos x - sin x )dx is equal to

int(1)/(sin^(2)x.cos^(2)x)dx is equal to

int_(0)^(pi)(1)/(1+sin x)dx is equal to

int1/(1+sin^(2)x)dx=

int_(-1)^(1)sin^(2) x dx