Home
Class 12
MATHS
If intf(x)/(logcosx)dx=-log(logcosx)+c, ...

If `intf(x)/(logcosx)dx=-log(logcosx)+c`, then f(x) is equal to

A

tan x

B

`-sin x`

C

`- cos x `

D

`- tan x `

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If int(f(x))/(logsinx)dx=log*logsinx, then f(x) is equal to

If int(f(x))/(log(sinx))dx=log[log sinx]+c , then f(x) is equal to

If : int(f(x))/(log(cosx))dx=-log[log(cosx)]+c, then : f(x)=

If f(x)=(log)_x(logx) , then f'(x) at x=e is equal to......

inte^x(tanx-logcosx)dx

If int (f(x))/(log (sin x))dx =log [log sin x]+c , then f(x) =

int((1-tanx)/(x+logcosx))dx

If f(x)=log|2x|,x!=0 then f'(x) is equal to

If intf(x)dx=g(x), then intf(x)g(x)dx is equal to