Home
Class 12
MATHS
Let f(x)=(sin^(2)pix)/(1+pi^(x)). Then, ...

Let `f(x)=(sin^(2)pix)/(1+pi^(x)).` Then, `int[f(x)+f(-x)]dx` is equal to

A

0

B

x+c

C

`x/2- (cos pi x )/(2 pi ) +c`

D

`x/2 - ( sin 2 pi x)/(4 pi ) +c`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Let inte^(x){f(x)-f'(x)}dx=phi(x) . then, inte^(x)f(x)dx is equal to

If int f(x)dx=f(x), then int{f(x)}^(2)dx is equal to

Let f(x)=In (2x-x^(2))+"sin"(pix)/(2). Then

If f(x)=f(pi+e-x) and int_(e)^( pi)f(x)dx=(2)/(e+pi) then int_(e)^( pi)xf(x)dx is equal to

If int f(x)dx=F(x), then int x^(3)f(x^(2))dx is equal to:

Let f(x)=(x^(2)-x)/(x^(2)+2x) then d(f^(-1)x)/(dx) is equal to

int_(-pi)^( pi)sin x[f(cos x)]dx is equal to