Home
Class 12
MATHS
int(1)/(cos^(-1)x.sqrt(1-x^(2)))dx=...

`int(1)/(cos^(-1)x.sqrt(1-x^(2)))dx=`

A

`log (cos^(-1) x)+c`

B

`-log (cos^(-1) x)+c`

C

`- (1)/(2 ( cos^(-1)x)^2) +C`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

int(x+cos^(-1)x)/(sqrt(1-x^(2)))dx

int(1)/(x)((1-x)/(sqrt(1-x^(2))))dx

int cos^(-1)sqrt((1-x)/(2))dx

int(dx)/((1+x)sqrt(1+x-x^(2)))dx

int(1)/(1-x^(2)) sqrt(1-x^(2))dx

int(x)/(sqrt(1-x^(2))*cos^(2)sqrt(1-x^(2)))dx=

int(tan(cos^(-1)x)+cot(sin^(-1)x))/(sqrt(1-x^(2)))dx=

int_(1)^(2)(1)/(x sqrt(x^(2)-1))dx=

Evaluate: int_((1)/(sqrt2))^(1) ((e^(cos^(-1)x))(sin^(-1)x))/(sqrt(1-x^(2)))dx

int_( then )^( If )cos^(-1)x+cos^(-1)sqrt(1-x^(2))dx=Ax+f(x)sin^(-1)x-2sqrt(1-x^(2))+c