Home
Class 12
MATHS
int(x^(3)sin[tan^(-1)(x^(4))])/(1+x^(8))...

`int(x^(3)sin[tan^(-1)(x^(4))])/(1+x^(8))dx=`

A

`1//4 cos [ tan^(-1) (x^4)]+c`

B

`1//4 sin [ tan^(-1) (x^4)]+c`

C

`-1//4 cos [tan^(-1) (x^4 )]+c`

D

`1//4 sec [ tan^(-1) (x^4 )]+C`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

int(x^(3)[tan^(-1)(x^(4))]^(2))/(1+x^(8))dx=

int(x tan^(-1)x^(2))/(1+x^(4))dx

int x^(3)(tan^(-1)x)dx

int(cos(tan^(-1)x)+sin(tan^(-1)x))/(1+x^(2))dx=

int x^(3)sin(x^(4)+1)dx

int (sin (2tan^(-1)x))/((1+x^(2)))dx.

Evaluate: int(sin(tan^(-1)x))/(1+x^(2))dx

Evaluate: (i) int(cos sqrt(x))/(sqrt(x))dx (ii) int((sin(tan^(-1)x))/(1+x^(2))dx

Evaluate: ( i int(4(sin^(-1)x)^(3))/(sqrt(1-x^(2)))dx (ii) int(log((tan x)/(2)))/(sin x)dx

int(sin^(-1)(3x-4x^(3))dx)