Home
Class 12
MATHS
int("cosec" x)/(cos^(2)(1+log tan.(x)/(2...

`int("cosec" x)/(cos^(2)(1+log tan.(x)/(2)))dx=`

A

`sin^2 [1 + log tan ""(x)/(2)]+c`

B

`tan [ 1 + log tan"" (x)/(2) ] +c `

C

` sec^2 [ 1 + log tan ""(x)/(2)]+c`

D

`- tan [ 1+ log tan"" (x)/(2)]+c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int("cosec x")/(cos^(2)(1+logtan.(x)/(2)))dx is

int(1)/(cos^(2)x(1-tan x)^(2))dx

int cos x log tan((x)/(2))dx

int (cos ecx) / (log (tan ((x) / (2)))) dx

Evaluate: int(cos ecx)/(log tan((x)/(2)))dx

int(cos^(2) (log .x))/(x)dx

int(1)/(x cos^(2)(1+log x))dx

Evaluate: (i) int(sec x)/(log(sec x+tan x)dx) (ii) int(cos ecx)/((log tan x)/(2))dx

int(secx" cosec "x)/(log(tanx))dx

int ("cosec"^(2)x)/((1-cot^(2)x))dx=?