Home
Class 12
MATHS
int(1)/(x^(2)sqrt(1+x^(2)))dx...

`int(1)/(x^(2)sqrt(1+x^(2)))dx`

A

`-(sqrt(1+x^2))/(x)+c`

B

`(sqrt(1+x^2))/(x) +c`

C

`-(sqrt(1-x^2))/(x)+c`

D

`-(sqrt(x^2 -1))/(x) +c`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

int(1)/(1-x^(2)) sqrt(1-x^(2))dx

The integral int(1)/((1+x^(2))sqrt(1-x^(2)))dx is equal to

Evaluate: int(1)/((1-x^(2))sqrt(1+x^(2)))dx

Evaluate: int(1)/((1+x^(2))sqrt(1-x^(2)))dx

Evaluate: int(1)/((1+x^(2))sqrt(1-x^(2)))dx

If int1/((1+x^(2))sqrt(1-x^(2)))dx=F(x)+c " and " F(1)=0 , then for x gt 0, F(x)=

int_(0)^(1)x^(2)sqrt(1-x^(2))dx=

Evaluate: int(1)/((x^(2)-1)sqrt(x^(2)+1))dx

I=int(1)/((x^(2)-1)sqrt(x^(2)+1))dx

The value of int(1)/((2x-1)sqrt(x^(2)-x))dx is equal to (where c is the constant of integration)