Home
Class 12
MATHS
I=int(1)/((x^(2)-1)sqrt(x^(2)+1))dx...

`I=int(1)/((x^(2)-1)sqrt(x^(2)+1))dx`

A

`(1)/(2sqrt(2) ) log { (sqrt(1+ x^2) + x sqrt(2))/(sqrt(1+x^2 ) - x sqrt(2))}+C`

B

`(1)/(2sqrt(2) ) log { (sqrt(1+ x^2) - sqrt(2))/(sqrt(1+x^2 ) + sqrt(2))}+C`

C

`(1)/(2sqrt(2) ) log { (sqrt(1+ x^2) -x sqrt(2))/(sqrt(1+x^2 ) + xsqrt(2))}+C`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

I=int(1)/((x+1)sqrt(x^(2)-1))dx

int(1)/(1-x^(2)) sqrt(1-x^(2))dx

int_(1)^(2)(1)/(x sqrt(x^(2)-1))dx=

int(1)/(x)((1-x)/(sqrt(1-x^(2))))dx

Let I_(1)=int_(1)^(2)(1)/(sqrt(1+x^(2)))dx and I_(2)=int_(1)^(2)(1)/(x)dx .Then

(i) int(x-1)/(sqrt(x^(2)+1))dx

int(dx)/((1+x)sqrt(1+x-x^(2)))dx

int_(1)^(2)(dx)/((x+1)sqrt(x^(2)-1))

int((2x-1))/(sqrt(x^(2)-x-1))dx